3.501 \(\int \frac{\sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=86 \[ \frac{2 a \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{3/2} (a+b)^{3/2}}-\frac{b \tan (c+d x)}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))} \]

[Out]

(2*a*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*(a + b)^(3/2)*d) - (b*Tan[c + d*x])/(
(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.103098, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {3833, 12, 3831, 2659, 208} \[ \frac{2 a \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{3/2} (a+b)^{3/2}}-\frac{b \tan (c+d x)}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Sec[c + d*x])^2,x]

[Out]

(2*a*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*(a + b)^(3/2)*d) - (b*Tan[c + d*x])/(
(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 3833

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^
2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx &=-\frac{b \tan (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\int \frac{a \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{-a^2+b^2}\\ &=-\frac{b \tan (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{a \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{a^2-b^2}\\ &=-\frac{b \tan (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{a \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{b \left (a^2-b^2\right )}\\ &=-\frac{b \tan (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b \left (a^2-b^2\right ) d}\\ &=\frac{2 a \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} (a+b)^{3/2} d}-\frac{b \tan (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.232228, size = 83, normalized size = 0.97 \[ \frac{\frac{b \sin (c+d x)}{(b-a) (a+b) (a \cos (c+d x)+b)}-\frac{2 a \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{3/2}}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Sec[c + d*x])^2,x]

[Out]

((-2*a*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(3/2) + (b*Sin[c + d*x])/((-a + b)*(a
 + b)*(b + a*Cos[c + d*x])))/d

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 118, normalized size = 1.4 \begin{align*}{\frac{1}{d} \left ( 2\,{\frac{b\tan \left ( 1/2\,dx+c/2 \right ) }{ \left ({a}^{2}-{b}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a-b \right ) }}+2\,{\frac{a}{ \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*sec(d*x+c))^2,x)

[Out]

1/d*(2*b/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)+2*a/(a+b)/(a-b)/((a+
b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.80353, size = 744, normalized size = 8.65 \begin{align*} \left [-\frac{{\left (a^{2} \cos \left (d x + c\right ) + a b\right )} \sqrt{a^{2} - b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + 2 \,{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d \cos \left (d x + c\right ) +{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d\right )}}, \frac{{\left (a^{2} \cos \left (d x + c\right ) + a b\right )} \sqrt{-a^{2} + b^{2}} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) -{\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d \cos \left (d x + c\right ) +{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/2*((a^2*cos(d*x + c) + a*b)*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqr
t(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2))
 + 2*(a^2*b - b^3)*sin(d*x + c))/((a^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c) + (a^4*b - 2*a^2*b^3 + b^5)*d), ((a
^2*cos(d*x + c) + a*b)*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c
))) - (a^2*b - b^3)*sin(d*x + c))/((a^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c) + (a^4*b - 2*a^2*b^3 + b^5)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.29836, size = 203, normalized size = 2.36 \begin{align*} -\frac{2 \,{\left (\frac{{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )} a}{{\left (a^{2} - b^{2}\right )} \sqrt{-a^{2} + b^{2}}} - \frac{b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a - b\right )}{\left (a^{2} - b^{2}\right )}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

-2*((pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c)
)/sqrt(-a^2 + b^2)))*a/((a^2 - b^2)*sqrt(-a^2 + b^2)) - b*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - b*
tan(1/2*d*x + 1/2*c)^2 - a - b)*(a^2 - b^2)))/d